From Northwestern / August 22, 2024
New research from Northwestern University has systematically proven that a mild zap of electricity can strengthen a marine coastline for generations—greatly reducing the threat of erosion in the face of climate change and rising sea levels.
In the new study, researchers took inspiration from clams, mussels and other shell-dwelling sea life, which use dissolved minerals in seawater to build their shells.
Similarly, the researchers leveraged the same naturally occurring, dissolved minerals to form a natural cement between sea-soaked grains of sand. But, instead of using metabolic energy like mollusks do, the researchers used electrical energy to spur the chemical reaction.
In laboratory experiments, a mild electrical current instantaneously changed the structure of marine sand, transforming it into a rock-like, immoveable solid. The researchers are hopeful this strategy could offer a lasting, inexpensive and sustainable solution for strengthening global coastlines.
↧